An Interesting Approach to Teaching Science to Children
North American children are lagging in science behind children in other parts of the developed world. A lot of the blame for that belongs with the standard government school approach to teaching science--memorizing facts and formulas.
Imagine a school where children learned scientific concepts hierarchically, in a logical progression much as they were originally discovered? What if science classes consisted almost entirely of experiments?
For more about the VanDamme Academy--a modified Montessori approach--go here.
Children need to learn science and technology experimentally. Educational methods need to exploit the strengths of the child's mind and motivation, but too often education is designed to undermine a child's confidence and prevent the acquisition of competence.
Imagine a school where children learned scientific concepts hierarchically, in a logical progression much as they were originally discovered? What if science classes consisted almost entirely of experiments?
One day, I taught my students the principle that water pressure increases only with depth. I gave them a powerful demonstration by poking holes at the same depth in two vessels of dramatically different diameters, and observing identical jets of water coming out of the holes. They were shocked and fascinated, and when one student’s mother came to pick him up, he immediately went to the board and started drawing diagrams and testing her about this principle to see if she understood it as well as he did. Such enthusiasm springs from a first-hand grasp of relevant principles, which can be achieved only by means of a hierarchy-driven curriculum.Source.
The principle of hierarchy is just as crucial in teaching more abstract scientific knowledge to older children as it is in teaching the simplest scientific knowledge to younger children. Consider the subject of physics.
Most science teachers present the highly abstract laws of physics as if they are self-contained truths, unrelated to the long history of scientific development. For example, Newton’s discovery of universal gravitation, one of the most extraordinary discoveries in the history of thought, is usually presented as an out-of-context commandment to be memorized—as knowledge that, along with Newton’s apple, fell from the sky.
A proper science teacher, by contrast, recognizes what the students must know for this law to be intelligible. He explains the steps in Newton’s reasoning, and ensures that the students have already learned the discoveries leading up to Newton’s theory, the principles they must know if they are to follow his reasoning.
In the famous incident with the apple, Newton asked himself if the same attractive force from the Earth caused both the apple’s descent and the moon’s orbit. In order to check the idea, Newton needed to know the acceleration of the apple (which he learned from Galileo), the size of the Earth (which had been measured by Eratosthenes), and the distance to the moon (which was calculated by Aristarchus). If the students are to grasp the law at hand, they must first grasp these facts—as did Newton.
Further, in arriving at this hypothesis, Newton was relying on Galileo’s principle of inertia, Kepler’s laws of planetary motion, and the law of circular acceleration (which Newton himself had discovered a few months earlier). Without this knowledge, Newton could not even have raised the question. Therefore, without this knowledge, the students cannot grasp the question and they certainly cannot understand Newton’s final answer.
Having been taught physics as it progressed historically, the students at VanDamme Academy know the discoveries of Aristarchus, Eratosthenes, Kepler, and Galileo. When guided through the ingenious process by which Newton integrated this knowledge and built upon it, the students thoroughly grasp the principle of universal gravitation: They see that it is true and why it must be true. The law of gravitation is, in their own minds, connected to reality. It is real knowledge.
Does the hierarchical approach to teaching science require that students be taught the entire history of science, including every detail of every experiment ever performed? No. A crucial part of teaching in accordance with the principle of hierarchy is to select only the essentials. This is in contrast to the common view, expressed in a local newspaper by a high school biology teacher, that the hardest part of his job is keeping up with all the latest discoveries in his field. The latest developments in biology are properly the concern of Ph.D. biologists who have the context to understand them and the need to apply them.
High school students should be taught a carefully selected list of the most essential discoveries in the field, and should be taught them in hierarchical order. Only if they are taught by this method will they emerge with a sound understanding of the fundamental concepts of science and a genuine ability to think. Anything else deprives them of independently grasped, real knowledge, in favor of passively accepted pseudo-knowledge.
For more about the VanDamme Academy--a modified Montessori approach--go here.
Children need to learn science and technology experimentally. Educational methods need to exploit the strengths of the child's mind and motivation, but too often education is designed to undermine a child's confidence and prevent the acquisition of competence.
Labels: education, science teaching
0 Comments:
Post a Comment
“During times of universal deceit, telling the truth becomes a revolutionary act” _George Orwell
<< Home