16 February 2006

Important New Discovery Keeps Stem Cells Alive Longer


Here is word of an important discovery at UC Irvine. Scientists at UCI, along with scientists at Johns Hopkins, have found a way to keep Human Embryonic Stem Cells (hES) alive in the laboratory. Up until now, keeping enough of the cells alive until time to transplant into a human patient has been difficult.


Human embryonic stem cells (hES) offer great hope for the treatment of some devastating diseases, but finding a way to keep enough of these cells usable and healthy for transplantation in patients has been an ongoing problem. Now, scientists at UC Irvine have discovered a way to keep large quantities of these cells alive, a finding that could potentially lead to mass production of hES cells for therapeutic use at lower cost.

These findings appear in a paper in the early online version of the journal Nature Biotechnology.

UCI stem cell researchers Peter Donovan and Leslie Lock, along with April Pyle of Johns Hopkins University, found that molecules known as neurotrophins have a significant effect on whether hES cells survive in the laboratory. Although stem cells have the ability to self-renew and to differentiate into any cell in the body, it has been a challenge to keep them alive as single cells in an undifferentiated state.


In their studies, Donovan and Lock added neurotrophins to hES cells in the laboratory to see the effect they would have on cell survival. Neurotrophins normally encourage the survival of tissue in the nervous system. When three members of the family of neurotrophin growth factors – brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4) – were added to hES cells in culture, the cells’ survival increased 36-fold.

....“Much of the research regarding stem cell therapy today focuses on areas involving the nervous system, such as the spinal cord,” Donovan said. “Neurotrophins help the growth of tissues in those areas and are commonly found in the nervous system. Therefore, when we use stem cells for therapy in those areas, we must be especially careful that no undifferentiated cells are transplanted where they could respond to neurotrophins and form tumors.” The work by Donovan and Lock provides a potential solution to the problem. By treating stem cells in culture with chemicals that block the action of neurotrophins on hES cells, Donovan said, scientists can kill the undifferentiated stem cells before they are implanted into the body.

According to Donovan, the studies also offer further proof that new stem cell lines need to develop beyond those already in existence. Federally approved hES lines currently used for research were not created in the presence of growth factors such as neurotrophins. The work undertaken by Donovan and Lock indicates that cell lines not created in these optimal conditions may eventually mutate and lose their usefulness for therapeutic purposes.

This study was funded through grants from the National Institutes of Health and Johns Hopkins University.


US Federal Government support for developing new hES lines would be very helpful. Even without such support, the research will go on. It will merely take longer, and probably cause the emigration of scientists from the US to other countries where funding is more generous.

Here is the source of the graphics, with details, and other graphics.
Hat tip to Biospace.com.

Labels:

Bookmark and Share

0 Comments:

Post a Comment

“During times of universal deceit, telling the truth becomes a revolutionary act” _George Orwell

<< Home

Newer Posts Older Posts
``